
Functional Decomposition of an Event Ticket

Booking System

Assignment 1

UX Design Studio – IV

Course Code: UXD 205

Student Name:

Pujan Aggarwal

Enrollment Number:

A021142924039

Submission Date:

15 December 2025

2. Introduction

The chosen system for this assignment is an Event Ticket Booking Application, similar in scope and

complexity to platforms such as BookMyShow. The system enables users to discover events, select venues

and showtimes, choose seats, complete payments, receive tickets, and manage bookings after purchase.

It also supports backend processes such as inventory control, pricing management, payment verification,

fraud detection, and automated notifications.

Functional decomposition is an important technique for understanding complex systems because it breaks

a large system into smaller, logically related components. Instead of focusing on screens or interface

elements, functional decomposition focuses on what the system does and how responsibilities are

distributed across layers. This approach helps designers and engineers identify hidden logic, system

dependencies, failure points, and automation requirements early in the design process.

The scope of this decomposition is limited to the digital ticket booking platform, including user-facing

features and backend system logic required to support them. Physical venue operations, hardware

scanners, and third-party infrastructure beyond system integration points are excluded. The analysis

focuses on functional behavior rather than visual design or implementation details.

3. Methodology

The functional decomposition was approached by first identifying the primary goals a user attempts to

accomplish within the system, such as discovering events, booking tickets, making payments, and

managing bookings. These high-level goals were translated into major functional domains, which form the

first level of the decomposition.

Each primary function was then broken down progressively into more detailed sub-functions. The

decomposition was carried out across five distinct layers. Level 1 represents primary functional buckets

that define broad system responsibilities. Level 2 captures user-visible sub-functions within each bucket.

Level 3 represents detailed functional capabilities that support those sub-functions. Level 4 contains

micro-components and operational steps required to execute features. Level 5 consists of conditional

logic and system-only operations that handle automation, validation, error recovery, and reliability.

Features were categorized based on responsibility rather than screen placement. User-facing capabilities

were placed in higher layers, while automation, validation, and background processes were pushed to

deeper layers. Shared logic such as inventory synchronization, fraud detection, and payment verification

was centralized to avoid duplication and ensure consistency across the system.

Throughout the decomposition, special attention was given to concurrency, failure scenarios, edge cases,

and backend automation. This ensured that the system model reflects real-world operating conditions

such as high traffic, payment ambiguity, and partial user actions.

4. ACTION → FEATURE MAPPING TABLE

USER ACTION TRIGGER DESTINATION SYSTEM REACTION

1 Clicks Sign Up Button click Registration Display form

2 Enters Email/Submit Form submit Email Verify Generate token

3 Clicks Verify Link Link click Activation Mark verified

4 Enters Login Creds Form submit Authentication Create session

5 Selects Remember Device Checkbox Device Manager Store fingerprint

6 Searches Event Name Search input Search Index Return results

7 Filters by City Filter selection Venue Manager Apply filter

8 Selects Event Poster Card click Event Details Load details

9 Clicks Show Time Time selection Seat Layout Load grid

10 Clicks Seat Seat click Seat Lock Lock, add cart

11 Clicks Add to Cart Button click Shopping Cart Store selection

12 Clicks Checkout Button click Payment Pipeline Calculate total

13 Enters Coupon Code Apply click Coupon Validator Calculate discount

14 Selects Credit Card Method selection Payment Router Display form

15 Enters Card Details Form submit Card Validator Validate, encrypt

16 Payment Processing API call Payment Processor Process charge

17 Payment Successful Success event Booking Confirm Create booking

18 Payment Fails Failure event Retry Logic Display error

19 Generates Ticket Booking confirm Ticket Generator Create PDF

20 Sends Confirmation Booking create Email Service Send ticket

21 Receives SMS Booking event SMS Gateway Send link

22 Clicks Change Seats Button click Modification Release locks

23 Initiates Cancel Cancel click Policy Checker Calculate refund

24 Confirms Cancel Confirmation Refund Processor Process refund

25 Requests Reminder Remind click Reminder Scheduler Schedule reminder

USER ACTION TRIGGER DESTINATION SYSTEM REACTION

26 Views My Bookings Menu click Booking Query Display bookings

27 Downloads Ticket Download click Ticket Storage Serve PDF

28 Transfers Ticket Transfer click Ticket Transfer Send link

29 Publishes Event Submit event Event Manager Store data

30 Uploads Seats CSV upload Venue Config Parse, create

31 Detects Suspicious Fraud score Fraud Queue Flag transaction

32 Reviews Flagged Approval/reject Payment Release Release/refund

33 Daily Job Runs Cron trigger Analytics Service Generate reports

34 Session Expires Inactivity timer Session Invalidation Clear token

Logic Breakdown

System-Only Processes (22)

1. Auto-release locked seats

Automatically releases seats after a timeout if checkout is not completed, preventing seat

hoarding.

2. Concurrency resolution

Resolves race conditions when multiple users attempt to book the same seat simultaneously.

3. Inventory synchronization

Keeps cached seat availability aligned with the primary database to prevent stale data.

4. Dynamic pricing adjustment

Updates ticket prices based on demand and predefined pricing rules.

5. Tax calculation
Automatically applies region-specific taxes during checkout.

6. Payment retry logic

Retries failed transactions safely without causing duplicate charges.

7. Email generation

Generates booking confirmations, tickets, and cancellation emails automatically.

8. SMS OTP generation

Generates and sends one-time passwords for authentication and verification.

9. Fraud detection execution

Continuously evaluates transactions and behavior to detect suspicious activity.

10. Report generation

Produces sales, booking, and performance reports on a scheduled basis.

11. Session cleanup

Terminates inactive sessions to free system resources and reduce risk.

12. Cache invalidation

Clears outdated cache entries after booking, cancellation, or seat updates.

13. Recommendation engine execution
Generates personalized event recommendations asynchronously.

14. Waitlist management

Activates waitlists when events are sold out and reallocates seats when available.

15. Event reminder scheduling

Schedules reminders based on event date and user preferences.

16. Refund calculation

Computes refund amounts based on cancellation policies and timing.

17. Data archival

Archives historical booking data for compliance and analytics.

18. Audit logging

Records critical system actions for traceability and compliance.

19. Capacity alerts

Triggers alerts when demand approaches venue or system limits.

20. Session persistence handling

Maintains session state across network interruptions.

21. Rate limiting

Restricts excessive requests to prevent abuse and system overload.

22. Database replication

Replicates data across nodes to ensure fault tolerance and availability.

Conditional Branches (8)

1. Payment method routing

Routes transactions to the appropriate gateway based on selected payment method.

2. Seat availability display logic

Determines whether seats are shown as available, locked, waitlisted, or sold out.

3. User authentication state check

Controls access to personalized features based on login status.

4. Refund eligibility evaluation

Applies refund rules based on time remaining before the event.

5. Error recovery decision logic
Determines whether to retry, rollback, or abort an operation after failure.

6. Accessibility feature activation

Enables alternate views or interaction modes when accessibility needs are detected.

7. Alternate seat suggestion logic

Suggests replacement seats when selected seats become unavailable.

8. Fraud risk threshold evaluation

Flags or blocks transactions exceeding predefined risk scores.

Error States (10)

1. Seat no longer available (SEA_001)

Occurs when another user completes booking first.

2. Insufficient payment funds (PAY_002)

Triggered when the payment method lacks sufficient balance.

3. Invalid or expired card (PAY_003)

Raised when card details fail validation.

4. Session expired (SES_001)

Occurs after prolonged user inactivity.

5. Venue not found (VEN_001)

Triggered when a venue is removed or unpublished.

6. Duplicate booking detected (BKG_001)

Prevents repeated bookings for the same user and event.

7. Invalid OTP entered (SEC_001)
Raised when authentication codes do not match.

8. Payment gateway timeout (GWY_001)

Occurs when the payment processor does not respond.

9. Database connection lost (DB_001)

Triggered during backend connectivity failures.

10. Concurrent booking conflict (CON_001)

Occurs during race conditions under high traffic.

Edge and Exception Cases (8)

1. Last-minute seat conflict

High-demand scenarios where many users attempt to book the final seat.

2. Event cancellation

Triggers automated refunds and notifications.

3. Traffic spike

Sudden surge in users requiring rate limiting and load balancing.

4. Currency fluctuation

Exchange rates are locked during checkout to prevent pricing mismatch.

5. Internet disconnection during payment

Requires server-side validation and safe retry handling.

6. Card expiration during checkout

Detected in real time to prevent settlement failure.

7. Timezone boundary issues

All event times are normalized to UTC to avoid inconsistencies.

8. Accessibility change mid-booking

Allows preference updates without restarting the booking flow.

Backend Triggers and Automated Processes (6)

1. Seat lock timeout trigger

Automatically releases locked seats after timeout expiration.

2. Scheduled inventory synchronization

Periodically syncs cache and database inventory.

3. Dynamic pricing update trigger

Adjusts prices based on demand thresholds.

4. Payment retry trigger

Initiates retries after transient payment failures.

5. Notification dispatch trigger

Sends confirmations, reminders, and alerts automatically.

6. Fraud monitoring trigger

Continuously scans transactions and behavior in the background.

Mobile User
https://amityassignments.pages.dev/assignment-1/markmap%20(2).svg

3. Missing Feature Identification

This section identifies critical system features that are typically invisible to end users but are essential

for reliability, accessibility, scalability, security, and business sustainability. These features are
intentionally excluded from the visible functional decomposition to highlight gaps that commonly exist

in surface-level product analysis. Each feature is mapped to the same five-layer functional model used
in the decomposition tree.

Feature 1: Seat Layout Rotation and Accessibility View

Why it is overlooked: Seat layouts are usually treated as static visual grids with no alternate
representations.

Why it is necessary: Accessibility-friendly views are required for wheelchair users, elderly users, and
visually impaired users to make informed seating decisions.

Layer: Level 3 – Detailed Functions (Accessibility Views)

Feature 2: Abandoned Cart Recovery Mechanism

Why it is overlooked: Abandoned carts are often considered an analytics concern rather than a

functional requirement.

Why it is necessary: A large percentage of bookings are abandoned before payment, and recovery

mechanisms significantly improve revenue and seat utilization.

Layer: Level 2 – Sub-Functions (Cart Persistence)

Feature 3: Partial Group Booking (Split Preferences)

Why it is overlooked: Booking flows usually assume a single unified group preference.

Why it is necessary: Groups often have mixed seat preferences, and partial booking prevents loss of the

entire transaction.

Layer: Level 4 – Micro-Components (Group Management Logic)

Feature 4: Dynamic Pricing Transparency

Why it is overlooked: Pricing logic is often treated as backend-only computation.

Why it is necessary: Transparency builds user trust and ensures compliance with consumer protection

regulations.

Layer: Level 3 – Detailed Functions (Price Breakdown)

Feature 5: Ticket Transfer and Gifting

Why it is overlooked: Post-booking behavior is frequently deprioritized.

Why it is necessary: Ticket transfers increase platform utility and unlock secondary engagement

without resale abuse.

Layer: Level 2 – Sub-Functions (Ticket Transfer)

Feature 6: Event Comparison View

Why it is overlooked: Events are usually presented in isolation.

Why it is necessary: Users benefit from comparing timings, venues, and prices across similar events

before committing.

Layer: Level 3 – Detailed Functions (Comparison Tools)

Feature 7: Biometric Authentication

Why it is overlooked: Email and password authentication is considered sufficient by default.

Why it is necessary: Biometric authentication significantly improves security and usability on mobile

devices.

Layer: Level 4 – Micro-Components (Biometric Verification)

Feature 8: Real-Time Inventory Redistribution

Why it is overlooked: Venues are treated as independent inventory pools.

Why it is necessary: Redistribution prevents artificial sell-outs when inventory is unevenly allocated

across shows or sections.

Layer: Level 1 – Primary Buckets (Quota Redistribution)

Feature 9: Accessibility Compliance Reporting

Why it is overlooked: Compliance is often handled outside the product experience.

Why it is necessary: Regulatory requirements such as WCAG 2.1 demand measurable accessibility

compliance.

Layer: Level 5 – System-Only Logic (Compliance Monitoring)

Feature 10: Pre-Booking Accessibility Questionnaire

Why it is overlooked: Immediate booking flows are prioritized over preference collection.

Why it is necessary: Collecting accessibility needs early prevents booking failures and last-minute

accommodations.

Layer: Level 3 – Detailed Functions (Preference Collection)

Feature 11: Fraud Detection Dashboard

Why it is overlooked: Fraud systems are typically hidden from operational visibility.

Why it is necessary: Real-time dashboards allow administrators to intervene before financial or

reputational damage occurs.

Layer: Level 5 – System-Only Logic (Fraud Monitoring)

Feature 12: Multi-Language and Regional Support

Why it is overlooked: English is often assumed as the default language.

Why it is necessary: Regional language support is critical in multi-lingual markets and directly impacts

adoption.

Layer: Level 2 – Sub-Functions (Language Support)

Feature 13: Booking Analytics for Users

Why it is overlooked: Analytics are commonly restricted to administrative use.

Why it is necessary: Providing users with booking history insights improves engagement and retention.

Layer: Level 3 – Detailed Functions (Personal Analytics)

Feature 14: Contingency Seating Plans

Why it is overlooked: Systems assume ideal operational conditions.

Why it is necessary: Equipment failure or venue constraints require rapid reassignment without

canceling bookings.

Layer: Level 4 – Micro-Components (Alternate Seating Logic)

Feature 15: Performance Metrics and SLA Monitoring

Why it is overlooked: Performance monitoring is treated as a purely operational concern.

Why it is necessary: Public-facing systems require measurable reliability to maintain user trust.

Layer: Level 5 – System-Only Logic (Status Monitoring)

Feature 16: Subscription and Membership Tiers

Why it is overlooked: Ticket purchases are assumed to be transactional and one-off.

Why it is necessary: Membership tiers enable recurring revenue and preferential booking experiences.

Layer: Level 2 – Sub-Functions (Membership Management)

Feature 17: Corporate and Bulk Booking Portal

Why it is overlooked: Systems are designed primarily for individual users.

Why it is necessary: Corporate bookings represent high-volume, high-value transactions with distinct

requirements.

Layer: Level 1 – Primary Buckets (B2B Booking Pipeline)

Feature 18: Historical Analytics and Trend Detection

Why it is overlooked: Systems focus on current availability rather than historical insight.

Why it is necessary: Trend analysis informs strategic pricing, scheduling, and demand forecasting.

Layer: Level 5 – System-Only Logic (Trend Analysis)

Conclusion

This assignment applied functional decomposition to an Event Ticket Booking Application in order to

systematically understand its structure, behavior, and underlying logic. By breaking the system into five

clearly defined layers, the analysis revealed not only user-visible features but also the hidden system

processes that ensure reliability, scalability, and correctness.

The decomposition exercise highlighted the importance of separating core functionality from conditional

logic, automation, and exception handling. System-only operations such as seat locking, inventory

synchronization, payment verification, and fraud detection play a critical role in maintaining fairness and

stability, especially under high concurrency and failure scenarios. Identifying these elements early helps

prevent design oversights that are not immediately visible at the interface level.

This structured breakdown will directly support navigation and interaction design in Module II. The clear

mapping of user actions to system responses provides a strong foundation for designing intuitive flows,

consistent information architecture, and resilient user journeys. Additionally, the identification of missing

features and edge cases ensures that future design decisions account for accessibility, error recovery, and

real-world usage conditions.

Overall, this functional decomposition demonstrates how complex digital systems can be analyzed

methodically, enabling better design decisions, improved user experience, and more robust system

behavior in subsequent stages of development.

