Abstract

This assignment focuses on building a complete navigation architecture for an Event Ticket
Booking Application, derived from the functional decomposition created in Assignment 1. The
work translates system functionality into structured navigation paths, covering primary,
secondary, and tertiary screens along with system-driven and conditional routes. The
architecture accounts for user goals, task sequences, and system constraints to ensure clarity
and scalability. Special attention is given to error states, authentication flows, and automated

system routes to reflect real-world usage conditions.

Problem Definition

Designing a navigation architecture for an Event Ticket Booking Application presents a unique

challenge due to the system'’s functional density and high number of conditional pathways. Unlike
simple content-driven applications, this product must support discovery, selection, transaction,
and post-booking management while simultaneously handling system-driven states such as seat

availability, payment validation, authentication, and error recovery.

The primary problem lies in translating a complex functional structure into a navigation system
that remains understandable and usable for end users. Many critical processes such as seat
locking, payment retries, refunds, and session expiration are essential to system reliability but are
not directly initiated by users. If these system-driven routes are not carefully integrated into the

navigation architecture, they can lead to broken flows, confusion, or loss of user trust.

Additionally, users interact with the system in non-linear ways. They may enter the product
through different entry points, abandon flows mid-way, encounter unavailable data, or return after
long periods of inactivity. The navigation architecture must therefore account for alternate paths,

redirection states, and conditional screens without increasing cognitive load.

The core problem addressed in this assignment is to design a navigation structure that balances
clarity with completeness. The architecture must expose necessary functionality at the right
level, hide system complexity where appropriate, and still provide predictable navigation across

normal, exceptional, and failure scenarios.

Summary of Feature Inventory



The feature inventory for this navigation architecture is derived directly from the five-layer
functional decomposition developed in Assignment 1. The purpose of this step is to identify all
functional elements that require user-facing screens and to distinguish them from system-level
logic and background processes. This ensures that the navigation structure is grounded in actual

functionality rather than assumed interface elements.

Based on the decomposition, features were classified into three categories: interface-level

features, system-level features, and background processes.

Interface-level features are functions that require one or more screens for user interaction.
These include event discovery, search and filtering, event detail views, seat selection, cart and
checkout, payment selection, ticket access, booking history, cancellations, and profile
management. Several of these features require multiple screens, such as the booking flow (event
selection — seat selection — order summary — payment — confirmation)and post-booking

management (ticket view, cancellation, refund status).

System-level features are logic-driven components that influence navigation but do not always
have a dedicated screen. Examples include seat locking, inventory synchronization, dynamic
pricing, fraud detection, payment verification, session handling, and refund eligibility checks.
While these features operate in the background, they often generate conditional screens such as
loading states, validation screens, error messages, or confirmation views that must be

represented in the navigation architecture.

Background processes include fully automated operations such as cache invalidation, database
synchronization, audit logging, notification scheduling, retry mechanisms, and analytics
generation. These processes do not require direct user interaction but trigger system-driven

routes like success messages, retry prompts, timeout screens, or forced redirections.

From this inventory, all features requiring a user interface, multiple screens, or dynamic content
generation were extracted. These features form the foundation for grouping, navigation
clustering, and flow mapping in the subsequent sections. By explicitly separating interface-level
functionality from system and background logic, the navigation architecture can remain user-

centric while still accounting for real-world system behavior.

Navigation Grouping Logic

Navigation grouping for the Event Ticket Booking Application was derived from the feature
inventory identified in the previous section. Features were organized into hierarchical navigation

clusters to reduce cognitive load, support task continuity, and align with user goals and system



constraints. The grouping follows a three-level structure: primary categories(Level 1), sub-

categories(Level 2), and micro-functions(Level 3).

Level 1: Primary Navigation Categories

The primary navigation consists of high-frequency, goal-oriented sections that represent the
core user intents within the system. These include Event Discovery, Bookings, Tickets, Profile,

and Support. Each category exists to support a distinct mental model rather than a technical

grouping.

Event Discovery groups all features related to browsing, searching, filtering, and comparing
events. This category is placed first due to its high entry frequency and its role as the starting

point for most user journeys.

Bookings represents active and historical booking-related tasks such as order summaries,
cancellations, refunds, and booking status. This category is separated from Tickets to avoid

mixing transactional history with access credentials.

Tickets focuses on ticket access, QR codes, transfers, and entry-related actions. This separation
ensures that time-sensitive actions are immediately accessible without navigating through

booking management screens.

Profile contains user-specific settings including personal details, preferences, saved payment
methods, and accessibility options. These features are lower in frequency and are therefore

placed away from the primary task flows.

Support includes help resources, FAQs, dispute resolution, and system-generated assistance.

This category is intentionally isolated to prevent support actions from interrupting primary flows.

Level 2: Sub-Category Grouping

Within each Level 1 category, features are grouped based on task sequence and functional
similarity. For example, Event Discovery contains sub-categories such as Search, Filters, Event
Details, and Venue Information. These elements are grouped to support progressive disclosure,

allowing users to move from exploration to selection naturally.

In the Bookings category, sub-categories include Active Bookings, Past Bookings, Cancellations,
and Refund Status. These groupings reflect different temporal states of a booking rather than

feature type.

Tickets include sub-categories such as Ticket Wallet, QR Code View, Ticket Transfer, and Entry

Instructions. These are grouped to support fast access during time-critical scenarios such as



venue entry.

Profile sub-categories include Account Details, Preferences, Security, and Payment Methods.

Support sub-categories include FAQs, Contact Support, and Issue Tracking.
Level 3: Micro-Function Placement

Micro-functions represent detailed actions that occur within specific screens, such as applying
filters, selecting seats, validating OTPs, or confirming payments. These functions are embedded
contextually within their parent screens rather than exposed as standalone navigation items. This
approach minimizes navigation depth and prevents users from being overwhelmed by excessive

options.
Grouping Criteria

All navigation clusters were formed using the following criteria:

¢ Functional similarity to ensure related tasks are grouped together
e Frequency of access to prioritize commonly used features

¢ Cognitive load to avoid unnecessary mental switching

e Task sequence to support natural user progression

e User goals rather than system architecture

e System constraints such as validation and state dependency

This grouping logic ensures that the navigation architecture is symmetrical, predictable, and
complete, while still flexible enough to accommodate system-driven and conditional flows

addressed in later sections.



